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ABSTRACT: The three-dimensional (3D) structure of precipitation systems is highly dependent on hydrometeor forma-
tion processes and microphysics. This study aims to characterize distinct vertical profiles of precipitation regimes by relying
on the availability of a high-quality, spatially dense radar network and its capability to observe the 3D structure of the
storms. A deep-learning-based framework, coupled with unsupervised clustering methods, is developed to identify types of
precipitation structures irrespective of their physical properties. A 6-month period of 3D reflectivity profiles from the
Multi-Radar Multi-Sensor (MRMS) network is used to identify different regimes and investigate their properties with
respect to the underlying environmental conditions. Dominant features retrieved from radar reflectivity profiles using con-
volutional neural-network-based autoencoders are employed to identify similar-looking vertical structures using coupled
k-means and agglomerative clustering algorithms. The k-means method identifies distinct groups, while the agglomerative
clustering visualizes intercluster relationships. The framework identifies 18 clusters that can be broadly combined into five
groups of varied echo-top heights. The 18 clusters demonstrate variability with respect to structural features and precipita-
tion rate/type, implying that profiles in each group belong to a physically different precipitation regime. An independent
analysis of the regime properties is conducted by matching the MRMS reflectivity profiles with environmental parameters
derived from the High-Resolution Rapid Refresh model forecasts. The distribution of the environmental variables con-
firms cluster-specific feature properties, confirming the physics-based regime separation across the clusters and their depen-
dence on the vertical structure. The identified precipitation regimes can assist in developing physics-guided retrievals and
studying precipitation regimes.

SIGNIFICANCE STATEMENT: This study proposes a systematic model to identify precipitation profiles of distinct
vertical structures and evaluate their dependence on environmental conditions. The model was developed using
ground-based radar observations; however, there is potential to extend this model to reflectivity profiles from both
ground- and satellite-based sensors. In addition, the identified precipitation regime clusters could be a proxy for the ver-
tical structure of precipitation systems and assist in determining the structural variability within traditional precipitation
type classification (e.g., convective versus stratiform). Moreover, identifying the precipitation regimes could also be
used to improve satellite-based precipitation retrievals. Finally, a better understanding of precipitation structure would
also help improve the initialization of climate models.
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1. Introduction

Quantitative estimation and understanding of precipitation
processes has increased vastly in the past three decades due to
advanced remote sensing techniques, improved ground-based
and spaceborne sensors, and retrieval techniques (Hong et al.
2019; Levizzani and Cattani 2019). Active and passive micro-
wave sensors, such as precipitation radars and radiometers,
measure the upwelling of radiation from Earth’s surface to
the top of the atmosphere. At the same time, quantitative pre-
cipitation estimates (QPEs) from these sensors are derived in-
directly from the measurements. Active sensors can observe
the three-dimensional (3D) distribution of hydrometeors explicitly

(Mace et al. 1998; Shupe et al. 2001). At the same time, the
retrievals from passive microwave sensors also depend on
the total column-integrated distribution of hydrometeors
and atmospheric composition, thereby implicitly relying on
the vertical structure (Shi et al. 2015). Thus, the observations
from satellite-based active and passive microwave sensors de-
pend on the 3D structure of precipitation systems impacting the
retrievals. For example, instantaneous precipitation QPEs from
Global Precipitation Measurement (GPM; Hou et al. 2014)
mission’s Dual-Frequency Precipitation Radar (DPR; Iguchi
et al. 2010), constraints the precipitation rate estimates with pre-
cipitation type and retrieved microphysics (Liao and Meneghini
2022). Passive microwave retrievals such as the Goddard profil-
ing algorithm (GPROF; Kummerow et al. 2015) also use hydro-
meteor profiles from GPMDPR as an a priori knowledge when
estimating the near-surface precipitation rate.

Besides, the 3D structure of precipitation also plays a critical
role in other applications, including understanding precipita-
tion microphysics and dynamics (Williams et al. 2007; Prat and
Barros 2010), formation of convective processes and tropical
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cyclones (Hence and Houze 2011; Hu and Ryzhkov 2022), and
lightning flash rates (Liu et al. 2012). Specifically, Dolan et al.
(2018) highlighted that distinct clusters of near-surface drop
size distributions (DSDs) could be related to specific reflectivity
profiles and precipitation regimes. Radar reflectivity factor can
also be used to initialize numerical weather prediction models
to improve short-term forecasting of convective-scale precipita-
tion events (Gustafsson et al. 2018). In particular, Schumacher
et al. (2004) initialized a climate model to study the formation
of large-scale tropical circulations using climatology of latent
heating profiles derived from the precipitation radar on board
Tropical Rainfall Measurement Mission (TRMM).

Precipitation-type classification is commonly used as a gen-
eral representation of the vertical structure of the precipita-
tion systems. For instance, precipitation systems are classified
as deep and shallow or stratiform and convective systems
based on the formation, thermodynamics, and vertical distri-
bution of hydrometeors (Houze 2014). However, it should be
noted that the 3D structure of precipitating events shows
much higher variability within the traditional precipitation
classes. For instance, midlatitude precipitation systems and
extratropical cyclones can be represented as a combination of
stratiform and convective events (Houze 1981). Additionally,
observations and models revealed the presence of multilay-
ered and collision–coalescence processes dominated systems
are a combination of deep and shallow regimes (Wilson and
Barros 2014; Verlinde et al. 2013; Porcacchia et al. 2019).
Such systems exhibit higher variability in the vertical structure
and are challenging to be classified, e.g., as either convective
or stratiform systems. At the same time, these system-specific
properties influence the near-surface precipitation rate re-
trievals. Therefore, grouping precipitation systems based on
the profile structure should help identify different precipita-
tion regimes and assist physics-guided precipitation retrievals
(You et al. 2015) as well as initializing numerical weather pre-
diction models (Smedsmo et al. 2005).

The advances in observational techniques measuring 3D
profiles from satellite- and ground-based sensors have con-
tributed to studies attempting to identify distinct precipitation
regimes. However, this is an arduous task given the number
of unique precipitation regimes is undetermined. Therefore,
most studies leverage unsupervised clustering techniques to iden-
tify precipitation regimes. For example, Zhang et al. (2007) clus-
ter histograms of reflectivity profiles from the CloudSat Cloud
Profiling Radar (CPR) to derive distinct cloud regimes over
tropics using k-means clustering techniques (Anderberg 1973)
identifying five distinct groups related to atmospheric characteris-
tics. Similarly, Luo et al. (2017) developed a methodology to
identify cloud and precipitation regimes from coincident multifre-
quency observations from the CloudSat CPR and TRMMPR re-
flectivity profiles. The authors identified three distinct clusters
further subdivided into three cloud regimes. Elsaesser et al.
(2010) also aimed to identify different precipitation regimes from
TRMM PR measurements. However, the authors extracted five
features from reflectivity profiles, such as the number of cloud
pixels with certain precipitation top height, average, and the ratio
of convective precipitation rate, to identify three distinct regimes,
namely, shallow, midlevel, and deep precipitation. Similar feature

extraction coupled with a k-means clustering approach has been
followed by Arulraj and Barros (2021) where specific features
from reflectivity profiles are used to distinguish low-level en-
hanced precipitation systems.

Current techniques for identifying precipitation regimes
utilize reflectivity profiles, histograms of profiles within a re-
gion, or regime-specific features and parameters. However,
using such a high-dimensional input to cluster results in sparse
distribution of data points in the high-dimensional space, with
traditional distance metrics, such as Euclidean distance, re-
sulting in inefficient clustering (Johnstone and Titterington
2009; Singh et al. 2014). A potential solution for this problem
can be found in reducing the number of dimensions through a
feature selection or some of the extraction methods. The
feature selection is based on selecting specific features of in-
terest, while feature extraction corresponds to transforming
the high-dimensional data into a lower-dimensional latent
space. Being straightforward, these techniques are not opti-
mal. Choosing specific features highly depends on domain
knowledge and may result in selecting highly correlated fea-
tures. Moreover, there is a possibility of missing features that
provide nuanced information to identify distinct clusters.
Principal component analysis (PCA) is a common statistical
method to reduce dimension; however, PCA ignores nonlin-
ear features. With the advent of high-performance comput-
ing and the availability of big data, the limitations of linear
dimension reduction methods can be addressed using deep-
learning-based methods such as autoencoders.

The objective of this work is to leverage deep-learning-based
methods and unsupervised learning techniques to identify distinct
precipitation regimes using ground-based reflectivity observa-
tions. Specifically, the study utilizes the 3D observations from
ground-radar network to perform feature extraction, using a
deep-learning-based autoencoder, and cluster specific features to
identify profiles of similar vertical structures. The reflectivity pro-
files for liquid phase events are obtained from the Multi-Radar
Multi-Sensor (MRMS) network over the eastern continental
United States (CONUS). Finally, independent estimations of
environmental variables from High-Resolution Rapid Refresh
(HRRR) model forecasts are used to understand the physical
meaning of the identified precipitation structure clusters.

The manuscript is organized as follows: section 2 describes
the datasets and the study region. Section 3 introduces the
machine learning framework used to extract features and the
clustering techniques followed to identify distinct precipitation
regimes. Section 4 assesses the performance of the feature extrac-
tion and clustering methods and links the precipitation structure
clusters to model-derived environmental parameters. Section 5 in-
vestigates the relationship between machine learning–extracted
features and physical variables. The conclusions and summary are
provided in section 6.

2. Data description and study region

Observations from ground-based radars and independent
model forecasts are used in this study. Detailed descriptions
of the datasets used and the region of interest are provided
below:
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a. MRMS

The MRMS network ingests observations from 180 opera-
tional radars, including the S-band (3 GHz) dual-polarization
Weather Surveillance Radar-1988 Doppler (WSR-88D) and
Canadian radar network across the CONUS and southern
Canada (Zhang et al. 2016). A seamless 3D mosaics are de-
rived from the radar observations at a spatial resolution of
0.018 3 0.018 (approximately 1 km3 1 km) and temporal resolu-
tion of 2 min (Qi and Zhang 2017). The data are available opera-
tionally at the National Oceanic and Atmospheric Administration
(NOAA) National Centers for Environmental Prediction
(NCEP) platform. In this study, we utilize MRMS Version-12
data. We use the following parameters: MergedReflectivityQC,
PrecipRate, PrecipFlag, and RadarQualityIndex. PrecipRate pro-
vides the QPEs from radar observations, and PrecipFlag inputs
the precipitation type information. Seven precipitation types are
identified based on the reflectivity profiles from radars and oper-
ational NWP model temperature profiles (Rapid Refresh; RAP).
The precipitation types include warm stratiform rain, snow, con-
vective, hail, tropical/stratiform mix, tropical/convective mix, and
cool stratiform (Hong and Gourley 2018). Reflectivity values at
33 vertical levels, with height ranging from 0.5 to 19 km above
mean sea level, and a variable vertical resolution (between 250 m
and 1 km) are available under the MergedReflectivityQC vari-
able. The quality of the radar observations is determined by
RadarQualityIndex [radar quality index (RQI)]. The values of
RQI range from 0 to 1, with 1 denoting the best-quality data.
The quality control process on MRMS product ensures im-
proved detection of melting layer and removal of missing, cor-
rupt, and contaminated data, as well as mitigation of ground/
sea clutter (Tang et al. 2020). Two-minute temporal resolution
MRMS data between May 2021 and October 2021 are consid-
ered for analysis.

b. HRRR

The HRRR model (Dowell et al. 2022) is a cloud-resolving
and convection-allowing weather research forecast model
running near real time at the NOAA/NCEP. The model has
3-km horizontal grid spacing and initialization that includes
assimilation of radar reflectivity observations. The model
forecasts of 0–18-h lead time are archived for the period from

2014 to present and are publicly accessible from various cloud
storage platforms including Google and Amazon Web Serv-
ices cloud storage. The objective of the model is to improve
short-scale forecasts of convective systems with a focus on the
storm life cycle. This study utilizes surface variables from
model forecasts with a lead time of 0 h. In particular, the fol-
lowing environmental variables are considered for analysis:
surface pressure, air temperature at 2 m above the surface,
relative humidity, the 08 isotherm level, precipitable water, to-
tal column integrated cloud water, convective available poten-
tial energy (CAPE), and convective inhibition (CIN). The
data are extracted for the same period as the MRMS data and
will be used in section 4d to investigate connections between
rainfall physical properties and the vertical structure.

c. Study region

The MRMS network predominantly covers the CONUS
and southern Canada. Figure 1a shows the percentage of
MRMS data with RQI $ 0.8 over the MRMS coverage area
between May and October 2021. Given the sparse coverage
over the western CONUS, the study is focused on the region
east of 1008W (gray shaded region in Fig. 1a; 608–1008W,
208–508N). The digital elevation model (DEM) for the study
region is depicted in Fig. 1b. The eastern CONUS has hetero-
geneous DEM and includes the southern Appalachian Moun-
tains. However, most of the study region lies below 2 km
above sea level, and thus the MRMS observations do not suf-
fer from significant beam blockage.

3. Methods and model description

Precipitation regime identification is set as an unsupervised
machine learning problem since the distinct precipitation verti-
cal structure is unknown. Therefore, a data-driven framework is
defined to include a feature extraction and clustering compo-
nent to systematically identify and cluster the reflectivity profiles
based on their shape. The framework consists of three major
steps: data preprocessing, feature extraction, and clustering.

a. Preprocessing

Preprocessing includes data filtering and normalization.
The study uses reflectivity profiles with an RQI of at least 0.8,

FIG. 1. (a) Frequency of available MRMS data with RQI greater than 0.8. The gray shaded region denotes the study
region boundary. (b) Digital elevation model of the study region.
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a minimum MRMS precipitation rate of 0.1 mm h21, and pre-
cipitation types that are not flagged as snow. To eliminate ar-
bitrary values and to be consistent with the varying terrain
height, the reflectivity profile height is carried in above
ground level (AGL) notation across the entire region of inter-
est. The reflectivity values are converted to an equal vertical
resolution of 250 m using linear interpolation for levels from
1 to 15 km AGL. This interpolation step converts the 33-level
profiles from MRMS data into 57-level profiles with heights
ranging between 1 and 15 km AGL. As an additional step for
quality control purposes, the profiles are checked for disconti-
nuity and attenuation. Reflectivity profiles with values lower
than 10 dBZ within 2 km AGL are not considered for analy-
sis, as these profiles are considered to be of low quality or do
not correspond to liquid precipitation type (Kirstetter et al.
2015; Wen et al. 2017). The proposed quality control elimi-
nates approximately 3% of the total MRMS reflectivity pro-
files obtained within the study region for the period May–
October 2021, resulting in around 500 million profiles for
analysis.

The extracted reflectivity profiles are split into three inde-
pendent subsets to enable the training, validation, and testing
of machine learning algorithms. The training dataset consists
of a total of 5.5 million profiles randomly chosen from the
days 26–31 for every month (26–30 for June and September).
Similarly, the validation dataset is constructed from randomly
chosen profiles from days 21–25 over the study time period.
The validation data used in this study has approximately
3.5 million profiles. All the data that are not considered for
training and validation are independent (i.e., test dataset) and
used to demonstrate the performance of the machine learning
methods. A large enough training and validation datasets
were chosen to train the autoencoder while a much larger
independent test dataset was chosen to demonstrate the
application.

b. Feature extraction

The proposed model targets extracting physically meaning-
ful features from the input data. Each pixel of the MRMS
gridded dataset is considered as an individual data point. Yet,
considering a reflectivity profile with 57 vertical levels leads to
an overall high number of dimensions with interdependent fea-
tures. This could lead to inefficient clustering (the next step de-
scribed in the following subsection) suggesting the need for
feature extraction (Johnstone and Titterington 2009; Singh et al.
2014). Thus, this work leverages dimension-reduction techniques
for feature extraction, such as hand-crafting physical variables,
linear algorithms (e.g., PCA), and nonlinear methods (e.g., au-
toencoders). Due to the complexity of the profile shapes and the
need to capture intrinsic variability within the profile, we rely on
deep-learning-based methods to extract features from the input
data.

Specifically, we use the convolutional neural network
(CNN) based autoencoders for dimension reduction and fea-
ture extraction. CNN-based autoencoders belong to lossy di-
mension reduction methods that are primarily data driven
and consist of two modules: encoder and decoder. The output

of the encoder is the derived features, while the output of the
decoder is the reconstructed input data. The encoder allows
for learning nonlinear features and properties from the input
data and transforming the data to a lower-dimension space.
The extracted features from the encoder module are passed as
input to the decoder module. The decoder is trained to recon-
struct the input data from the reduced-dimension features. The
output of the decoder module is the reconstructed reflectivity
profiles. In a well-constructed model, the features extracted
from the encoder provide an optimal feature-to-information
link, representing the input data with minimal reconstruction
losses. Even though the deep-learning-based methods are
computationally intensive, they could efficiently capture micro-
details within the input data. The recent advances in high-
performance computing facilities [e.g., graphics processing units
(GPUs)] enable us to overcome the shortcomings of computa-
tional complexity.

The encoder module consists of convolutional layers fol-
lowed by fully connected (FC) layers. Each convolutional
layer consists of convolutional filters followed by batch nor-
malization, activation function, and pooling layer. The input
data are one dimensional; thus, 1D convolutional filters are
used in the model. The output of the convolutional filters is
transformed using an activation function, after which the
pooling layer performs downsampling by either averaging
(low-pass filter) or extracting the maximum value (high-pass
filter). On the other side, the decoder module consists of fully
connected layers followed by deconvolutional layers. A de-
convolutional layer has transposed convolutional filters fol-
lowed by batch normalization and activation layers. Here, the
encoder and decoder models are trained in tandem to mini-
mize the reconstruction loss of input data.

The schematic of the autoencoder model used in this study
is shown in Fig. 2a. The model is implemented using the Py-
Torch platform (an open-source machine learning frame-
work) and trained on a workstation with 2x NVIDIA RTX
2080 Ti GPUs. Upon extensive hyperparameter tuning, the
architecture shown in Table 1 and Fig. 2a were identified as
optimal. The encoder module has two layers, each with 1D
convolutional filters, batch normalization, activation func-
tions, and a pooling layer. The batch normalization step is ap-
plied between the layers of the neural network architecture.
The exponential linear unit (ELU) activation function is con-
sidered in the architecture to translate the output from convo-
lutional layers. Then, the maximum pooling operation is
performed to retain the element with the highest value within
the region of the convolutional filter. Five FC layers follow
the convolutional layers of the encoder module, with the final
FC layer of the encoder module providing the extracted
lower-dimensional features. The ELU is used as the activation
function for the FC layers. The number of nodes in the final
FC layer of the encoder module is modified to fit the number
of features.

Similarly, the decoder module includes a set of FC layers
followed by the deconvolutional layers with an ELU activa-
tion function. A standard gradient descent optimizer is used
to train the model with mean squared error (MSE) as the loss
function. The loss function is calculated between the input
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reflectivity profile and the reconstructed profile, which is the
output of the decoder module:

L 5
1
N
∑
N

i51
(Zi 2 Ẑi)2, (1)

where L (dBZ) is the loss, N is the total number of reflectivity
profiles, Z (dBZ) is the input reflectivity factor, and Ẑ (dBZ)
is the output of the decoder module.

Feature extraction is performed for a different range of fea-
tures using the same model architecture. As a result, the num-
ber of nodes in the final FC layer of the encoder is modified
to accommodate the different number of extracted features.
The model is trained for different number of features for at
least 200 iterations until it converges. The best number of fea-
tures is chosen based on a new metric called optimal model
indicator (OMI) that optimizes the model complexity and
model performance. OMI for a k-feature autoencoder model
(OMIk) is calculated as follows:

OMIk 5
k

∑
n2

i5n1
i

1
Lk

∑
n2

i5n1
Li

, (2)

where k is the number of features, n1 and n2 are the minimum
and maximum number of features considered in the autoen-
coder model, and Lk is the MSE loss for the k-feature au-
toencoder model. The model complexity is defined by the
number of features while the model performance is quanti-
fied by MSE loss (L). The autoencoder model with minimum
OMI is considered as the optimal model and best number of
features.

c. Clustering

In the final step, the output from the feature extraction
framework is used as an input to group reflectivity profiles
with similar structures. Here, the number of distinct profile
patterns is undetermined. Thus, this step relies on unsuper-
vised machine learning. Several unsupervised clustering algo-
rithms have been proposed in the literature (described
below), each very sensitive to the application and properties
of the input data, and of challenging to evaluate performance.

The k-means algorithm (Anderberg 1973), the most com-
monly used method, clusters the data points into k distinct
groups by minimizing the intracluster distances iteratively.
The k-means algorithm is computationally inexpensive and
can handle a large amount of data efficiently. However, the al-
gorithm is sensitive to initial conditions, such as the choice of
initial cluster centroids and the total number of clusters. At
the same time, it is prone to gravitating toward local minima
(Li and Wu 2012), leading to inefficient clustering. Besides, de-
termining the number of clusters (especially for an unsupervised

FIG. 2. (a) Schematic of the autoencoder model that extracts n features from input reflectivity profiles of size 573 1.
(b) Schematic of the clustering framework used to identify precipitation regimes.

TABLE 1. Hyperparameters of the CNN-based feature-extraction
model. The number of features extracted from the encoder module
is denoted by n.

Hyperparameters Encoder Decoder

Convolutional layers 2 }

Convolutional filters 4, 6 }

Convolutional kernel size 1 3 2, 1 3 2 }

Deconvolutional layers } 2
Deconvolutional filters } 4, 1
Deconvolutional kernel size } 1 3 2, 1 3 2
Fully connected layers 4 3
Fully connected neurons 90, 57, 25, 12, n 12, 20, 28
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scenario) is nontrivial, complicating clusters’ organization and
visualization for high-dimensional data.

Fred and Jain (2005) proposed that combining different
clustering techniques has the capability for better perfor-
mance and can help mitigate the disadvantages associated
with a single algorithm. A coupled k-means and hierarchical
clustering was tested on high-dimensional data and proved
to perform better (Chen et al. 2005; Peterson et al. 2018).
The k-means algorithm helps identify localized centers
while the hierarchical clustering can improve the cluster
visualization and understanding without the restriction on
choosing the number of clusters a priori. A similar approach
is adopted here to distinguish characteristic vertical reflec-
tivity profiles.

The flowchart of the clustering framework used in this
study is shown in Fig. 2b. The input data are the extracted
features from the autoencoder model. As a first step, these
features are normalized using a standard scaler to avoid po-
tential bias toward higher values. The standard scaler removes
the mean and normalizes the data using the variance. Next,
the scaled features are provided as the input to the k-means
algorithm. Here, we perform k-means clustering for a large
value of k, and extract the corresponding cluster centroids.
The extracted k-means centroids are the inputs to the agglom-
erative clustering algorithm (a type of hierarchical algorithm).
Agglomerative clustering follows a bottom-to-top approach
where every data point is an individual cluster initially. The
algorithm combines similar instances following the minimiz-
ing criteria until all the points are grouped into a single clus-
ter. Agglomerative clustering is computationally complex
[O(n3)] as this method calculates pairwise distances for every
data point. This study uses “ward” linkage as the minimizing
criteria. Ward linkage follows Euclidean distance and aims to
minimize intraclass variances similar to that of k-means algo-
rithm. Typically, a dendrogram (tree diagram) is used to visual-
ize the organization and relationship in hierarchical clustering
and to determine the optimal number of clusters.

The best number of clusters can be derived based on the
compactness within identified groups and high separations
across the groups. Some of the commonly used metrics to esti-
mate the best number of clusters are the Dunn index (Dunn
1974) and Davies–Bouldin (DB) score (Davies and Bouldin
1979). The Dunn index is defined as the ratio between the
minimum intercluster distance and maximum intracluster dis-
tance. The DB score is the ratio between the average intra-
cluster and intercluster distance. Higher values of the Dunn
index and lower values of the DB score are usually preferred
to obtain the best number of clusters. This study uses the DB
score and inverse of the Dunn index to identify the best num-
ber of clusters.

4. Results

a. Feature extraction

The autoencoder model proposed in section 3b is used for
feature extraction. The best model is expected to have the least
reconstruction loss between the input data and reconstructed

data. The model is trained for a different number of encoded
features, ranging from 3 to 12, and the reconstruction loss is cal-
culated. At least 200 epochs are executed for every experiment
until the training and validation loss converges to prevent over-
fitting. The MSE loss for the training and validation samples
from the autoencoder is shown in Fig. 3a. As the number of fea-
tures increases, more information on the reflectivity profiles is
retained by the encoder model, and thus, the reconstruction
loss is reduced. However, when the number of features is in-
creased to 8 or more, the computational complexity increases
while the increase in performance is not significant. This is evi-
dent from OMI values shown in Fig. 3b. The minimum OMI is
obtained for 8 features and thus, 8 features is recognized as
the best number for preserving the information contained in
the reflectivity profiles. Figure 3c shows an example profile
from the MRMS data (solid black line) and the reconstructed
profiles (dotted lines) from the autoencoder framework. The
reconstructed profile from the 3-feature autoencoder model
fails to accurately capture the entire structure, especially
around 12.5 km AGL and below 2.5 km AGL. On the other
hand, as the number of features increases, the overall shape
is well captured. However, the improvement between the
8-feature and 12-feature reconstructed reflectivity profile is
insignificant. Finally, Fig. 3d shows the convergence of the
8-feature autoencoder training and corresponding validation
loss function. The training loss converges around 0.37, while
the validation loss is approximately 0.39, confirming that the
autoencoder model does not overfit and truly extracts the best
features.

To further validate the ability to preserve the structure, cor-
relation coefficient [CC; Eq. (3a)] and bias [Eq. (3b)] are cal-
culated for the measured (Z) and reconstructed reflectivity
profiles (Ẑ). These error assessments provide understanding
of the biases in the feature extraction model that could lead
to potential uncertainties. This analysis is performed on the
test dataset, which includes more than 440 million profiles.
Figure 4a shows the histogram of the correlation coefficient
between the observed and the corresponding reconstructed
reflectivity profiles. More than 93% of the reflectivity profiles
have a correlation coefficient greater than 0.9 (magenta line
in Fig. 4a). In particular, approximately 70% of the reflectivity
profiles have CC around 0.99, suggesting that the reconstructed
profiles could capture the structure of the measured profiles ex-
tremely well:

CC 5
1
N

∑
N

i51
[Ẑi 2 mean(Ẑ)][Zi 2 mean(Z)]���������������������������

∑
N

i51
[Ẑi 2 mean(Ẑ)]2

√ ���������������������������
∑
N

i51
[Zi 2 mean(Z)]2

√ , (3a)

bias 5
∑
N

i51
(Ẑi 2 Zi)

∑
N

i51
Zi

: (3b)

The histogram of the bias between Z and Ẑ is shown in Fig. 4b.
Almost all the profiles (99%) exhibit less than 1% bias; 70% of
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the reflectivity profiles have less than 0.1% bias. Besides, over-
estimation seems to be slightly dominant compared to underes-
timation (61% of profiles have a positive bias). Overall, most of
the profiles have higher CC and lower bias with no evidence of
systematic errors in the model. Finally, the reconstructed pro-
files are evaluated to investigate the dependence of bias with
height (Fig. 4c) and reflectivity factor value (Fig. 4e). Figure 4c
shows lower bias in most vertical levels. The highest biases are
observed around 14–15 km AGL, but other vertical levels
have less than 5% bias. However, only 3% of the total profiles
have reflectivity values above 13 km AGL (Fig. 4d). The bias
analysis with respect to the reflectivity value (Fig. 4e) high-
lights a negative bias of approximately 6% only when reflectiv-
ity values are greater than 60 dBZ. All the other reflectivity
values exhibited a bias of less than 2%. Therefore, the recon-
structed profiles have significantly smaller biases except for
the top 1 km (14–15 km) and at very high reflectivity values.
However, the higher bias values are observed only for a lim-
ited sample size (3% profiles). This analysis confirms that the
extracted features do not exhibit any systematic errors associ-
ated with the feature extraction model and can be used for
precipitation regime identification.

b. Identification of precipitation regimes

The proposed clustering framework is demonstrated using
the extracted features of the validation dataset. After scaling
and normalization by the standard scaler, the features from
the autoencoder model are provided as the input to the
k-means clustering algorithm. The k-means clustering algo-
rithm groups the data into 500 clusters, thereby extracting
500 cluster centroids. Even though this model is demonstrated
with 500 k-means cluster centroids, note that the proposed
framework is applicable for any large number of clusters, and
the final interpretation of results is not sensitive to the num-
ber of k-means clusters chosen. Figure 5 shows the dendro-
gram of the agglomerative clustering algorithm applied to the
500 k-means cluster centers. Agglomerative clustering follows
bottom to top approach. The full dendrogram starts from
500 individual clusters and extends to a single cluster. Here,
the dendrogram shown is restricted to 20 clusters instead of all
500 cluster centers for easy visualization and understanding.
The y axis of the dendrogram denotes a proxy to the distance
at which the two different clusters are combined. The numbers
in the individual boxes in Fig. 5 denote the number of k-means
centroids in the corresponding level.

FIG. 3. (a) Reconstruction loss of the autoencoder model and (b) optimal model indicator (OMI) compared with
the different number of features. The 8-feature model is identified as the best number of features. (c) An example
MRMS-observed reflectivity profile (black curve) and its reconstruction using an autoencoder model with different
dimensions. (d) MSE loss function for training and validation of the 8-feature autoencoder model.
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Next, the inverse Dunn index and DB score are calculated
for 2–25 clusters for the agglomerative clustering to determine
the best number of clusters (Fig. 6). The minima for the in-
verse Dunn index and DB score signify the best number of
clusters with higher intercluster and lower intracluster distan-
ces. Both the inverse Dunn index and DB score point to two
clusters as the optimal number of clusters. The two-cluster
scenario separates reflectivity profiles into deep and shallow
regime, with the results only based on the echo-top height.
The highest variability of the reflectivity profiles is predomi-
nantly observed at the storm top height, where the values vanish
to zero. When evaluating the contoured frequency by altitude
diagrams (CFADs) for the scenarios with less than five clusters,
the driving factor of the clustering algorithm is the top height.
For example, the five-cluster case (red dotted line in Fig. 3) has
clusters with echo-top heights around 6, 8, 10, 12, and more than
12 km AGL, respectively (Fig. 7). Beyond the five-cluster sce-
nario, the other factors, such as near-surface reflectivity values,
multilayer processes, bright band, and curvature of profiles, start
playing a role in the classification. Thus, different vertical struc-
ture within similar echo-top height is identified when consider-
ing higher number of clusters.

The second local minima of the Dunn index and DB score
(Fig. 6) curve is observed when the number of clusters is be-
tween 18 and 20. The higher number of clusters separated the

profiles based on the structural variations in addition to echo-
top height. The lower number of clusters separations are pri-
marily dependent on the top height of the storm. Even though
Fig. 6 suggested 18 clusters as the best number of clusters
based on the metrics, the 5-cluster groups were also chosen to
identify the clusters within the 18-cluster group that has simi-
lar echo-top height for further analysis. Choosing the 5-cluster
group in addition to the 18-cluster group enables to identify
reflectivity profiles with similar echo-top height, but different
overall vertical structure and near-surface environmental vari-
ables to highlight the importance of vertical structure varia-
tions and the associated precipitation regimes. The red and
magenta dotted lines in Fig. 5 represent the distance thresh-
olds considered to obtain 5 and 18 clusters, respectively. Note
that the clusters in the 18-cluster scenario contribute to the
5-cluster groups, as seen in Fig. 5.

Hereinafter, we refer to the 5 clusters from the 5-cluster
threshold as “macroclusters” and the source clusters from the
18-cluster threshold as “subclusters.” The 5 macroclusters and
their corresponding subclusters in the 18-cluster case are
highlighted by the same color-shaded boxes in Fig. 5. For ex-
ample, the first cluster of the 5-cluster scenario (C1) has five
subclusters from the 18-cluster scheme. Thus, each cluster
from the 5-cluster scenario can be mapped to an independent
set of clusters in the 18-cluster case. The clusters in the

FIG. 4. Histograms of (a) CC and (b) bias for reflectivity profiles. Variation of bias with (c) vertical levels and
(d) frequency of number of samples. Variation of bias with (e) reflectivity factor and (f) number of samples in corre-
sponding reflectivity bins.
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5-cluster scenario are denoted as C1, C2, C3, C4, and C5, with
C1 pointing to the lowest echo-top cluster and C5 represent-
ing the group with the deepest reflectivity profiles. The sub-
clusters of macrocluster Ci are called Ci-j, where i is the
cluster number from the 5-cluster case, and j denotes the
“cluster index”}the subcluster. Figure 8 shows the CFADs
of reflectivity profiles from all 18 clusters. The panels of Fig. 8
are organized and named to highlight the subcluster nodes for
the 5-cluster scenario. The CFADs confirm that the subclus-
ters of the 5-cluster case could subclassify the reflectivity pro-
files beyond the storm top height.

c. Characterization of the precipitation regimes

The precipitation structure clusters are strictly based on the
vertical structure of the reflectivity profiles. The structural

features such as near-surface reflectivity factor, echo-top
height, maximum reflectivity factor, and height at which maxi-
mum reflectivity occurs are derived from the reflectivity pro-
files. The echo-top height is calculated as the maximum height
at which the reflectivity factor is greater than or equal to
10 dBZ. The precipitation type and rain rate are obtained from
the MRMS product. The distribution of the structural features,
precipitation rate and type, are computed to characterize the
physical properties of the identified clusters. Figure 9 shows the
boxplots of the reflectivity features for all 18 clusters. The nam-
ing convention for the clusters and color-shaded boxes is the
same as seen in Fig. 8. The upper and lower limits of the box
plots highlight the 25th and 75th percentile of the data points,
and the solid red line depicts the median of the data. Figure 9a
shows the distribution of echo-top height of the reflectivity

FIG. 6. (a) Inverse of the Dunn index and (b) DB score for different number of clusters applied to agglomerative
clustering algorithm.

FIG. 5. Dendrogram constructed from agglomerative hierarchical clustering of 500 k-means cluster centroids. The numbers in each box
denote the number of k-means centroids in that corresponding level. The red and magenta dotted lines denote distance thresholds for
5 and 18 clusters, respectively. The colored boxes represent each of the 5 clusters and the associated clusters in 18-cluster cases.
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profiles. The maximum variation of echo-top height is noticed
for the subclusters within “C1” clusters, where the height varies
between 3 and 6 km AGL. The echo-top height is almost simi-
lar for all the other clusters and lies within a 1-km interval.
This finding confirms that cluster C1 includes shallow profiles,
and the echo-top height increases as the cluster number
increases.

Cluster C1 consists of shallow profiles with a light precipita-
tion rate. However, cluster C1-5 has a higher median near-
surface and maximum reflectivity factor compared to the other
subclusters of C1. The MRMS-derived rain rate (Fig. 9e) also
supports this observation. Additionally, profiles in C1-5 seem
to have the median maximum reflectivity around 3 km AGL.
On the other hand, C1-1 to C1-4 exhibit maximum reflectivity
value at 1 km AGL highlighting the vertical structure differ-
ence among cluster C1. Similarly, the profiles in cluster C2
have echo-top heights varying between 6 and 8 km AGL, de-
noting midlevel precipitating storms. All the parent clusters
within the C2 group also exhibit a similar maximum reflectivity
height of around 2 km. However, C2-3 includes profiles with
lower near-surface precipitation rates than the other parent
clusters of C2.

For profiles in the C3 cluster group, the median echo-top
height is around 8–9 km AGL. Especially, C3-1 has a lower
echo-top height, while C3-2 and C3-3 have similar echo-top
heights around 9 km AGL. However, C3-1 and C3-3 have simi-
lar median maximum and near-surface reflectivity factors, while
C3-2 has approximately five dBZ higher near-surface and maxi-
mum reflectivity factors. The distribution of height with maxi-
mum reflectivity factor is very similar for all three subclusters of
the C3 group. The C4 group also has three subclusters, with the

median echo-top height varying between 10 and 12 km AGL.
These profiles represent deep precipitation events with near-
surface reflectivity values varying between 20 and 35 dBZ. The
median rain rate observed by MRMS ranges between 1 and
5 mm h21. C4-3 consists of a lower rain rate than other subclus-
ters, and the same pattern is seen in near-surface and maximum
reflectivity factors. Maximum reflectivity height varies between
2 and 3 km AGL for the C4 scenario, with C4-3 showing a
higher median height. These observations and the CFADS
shown in Fig. 8p confirm that C4-3 has a clear brightband struc-
ture. Finally, C5 has two subclusters with very similar echo-top
height of around 14 km AGL representing deep precipitation
systems. The profiles in cluster C5-2 have a median rain rate of
approximately 2 mm h21 and a near-surface reflectivity factor
of around 25 dBZ. In contrast, the profiles in the C5-1 group
have a rain rate about 10 times higher than that of the C5-2.
Also, profiles in C5-1 exhibit the highest median rain rate, maxi-
mum, and near-surface reflectivity compared to all the 18 clus-
ters. Overall, the statistical distribution analysis of reflectivity
features and near-surface rain rate confirms that the clustering
algorithm could distinguish between profiles by echo-top height,
presence of the bright band, near-surface enhancement, and
rain rate.

The identified clusters are compared with the MRMS pre-
cipitation type. Figure 10 shows the distribution of the MRMS
precipitation type with respect to the 18 clusters. Figure 10
does not show the frequency of stratiform precipitation (pro-
vided in the online supplemental material). Stratiform precip-
itation type dominates all but the C5-1 cluster. In addition to
stratiform events, subclusters in C1 also include cool strati-
form regimes. Convective and tropical stratiform precipitation

FIG. 7. Contoured frequency by altitude diagram of reflectivity profiles for clusters obtained from 5-cluster agglomerative clustering.
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types are identified in clusters C1-5. Moreover, the profiles in
C2, especially clusters C2-2 and C2-5, also have a higher fre-
quency of convective and tropical stratiform precipitation.
The rest of the C2 subclusters include tropical stratiform and
cool stratiform cases. The C3 clusters have higher echo-top
heights compared to the C1 and C2 clusters and are domi-
nated by tropical stratiform cases. Finally, convective cases
are found to be higher as the cluster number increase. Sub-
clusters C4-1 and C4-2 have around 0.1% of reflectivity pro-
files classified as convective and tropical convective storms.
The C4-3 cluster, even though it has a similar echo-top height
as C4-2, it does not include dominant convective storm instan-
ces. Similarly, in the C5 cluster group, C5-1 includes most hail
and convective storms, while C5-2 shows a higher frequency

of convective and tropical stratiform storm events. This analy-
sis proves that the reflectivity structure classification reveals a
more defined categorization associated with the structure
compared to the traditional precipitation type classification.
The methodology only depends on the reflectivity profiles en-
abling the identified clusters to offer a better understanding
of precipitation regimes, which in turn could support the de-
velopment of physically consistent precipitation retrievals for
satellite- and ground-based sensors.

d. Linking regimes to environmental conditions

To understand the impact of environmental factors on
precipitation vertical structure, we rely on surface variables
derived from HRRR model forecasts, such as the surface

FIG. 8. Contoured frequency by altitude diagram (CFADs) of reflectivity profiles for clusters obtained from the 18-cluster case.
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pressure, relative humidity, convective available potential
energy (CAPE), convective inhibition (CIN), 08 isotherm
height, air temperature at 2 m above the surface, total pre-
cipitable water and total column integrated cloud water
(TCW). To highlight the difference between the 18 identi-
fied clusters, Fig. 11 shows the distribution of the environ-
mental parameters with respect to different clusters. The
organization and color scheme is similar to that in Figs. 5
and 9. Cluster C1-1 shows approximately 3–4 K higher
median 2-m air temperature and higher freezing level
height than the C1-2, C1-3, and 5C1-4. This confirms that
the profiles in C1-1 represent very shallow, light, and warm
precipitation events. Clusters C1-2 and C1-5 have a similar
echo-top height of 6 km AGL. However, cluster C1-2 has a
lower 2 m temperature, 08 height, and CAPE compared to

cluster C1-5 suggesting that the profiles in C1-2 have a
lower probability of developing into convective systems
and mostly dominated belong to cool stratiform cases.
C1-3 also has the lowest median 08 isotherm height suggest-
ing the profiles in C1-3 are more prone to cold conditions
than C1-1.

Reflectivity profiles in cluster C2 demonstrate the echo-top
height of around 6–8 km but show higher variation with re-
spect to rain rate. The C2-3 parent cluster has the lowest me-
dian rain rate, while C2-5 has the highest. Analysis with
environmental variables for the profiles in C2-5 showed
higher values for 2-m temperature, 08 isotherm height, precip-
itable water, and CAPE. This suggests the presence of updraft
in cluster C2-5, with the events related to this cluster recog-
nized as shallow convective systems. Cluster C2-2 also shows

FIG. 9. Distributions of (a) echo-top height, (b) near-surface reflectivity factor, (c) maximum reflectivity, (d) height
with maximum reflectivity, and (e) near-surface rain rate from MRMS. The whiskers in the boxes suggest the 25th
and 75th percentile, and the red line shows the median. The color shades are consistent with Fig. 5.
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higher CAPE variability and includes shallow convective and
tropical stratiform cases. The profiles in cluster C3 have
higher echo-top heights than C1 and C2, but have similar en-
vironmental variables values.

The last two clusters, C4 and C5, consist of deep precipita-
tion events with echo-top heights greater than 8 km AGL.
The total integrated cloud water values for C4-3 are lower
than those of C4-2. Contrarily, C4-3 exhibits higher values of
CAPE compared to that of C4-2. Both C4-2 and C4-3 show
higher CIN values than the shallower profiles. Finally, C5 re-
lates to deep precipitation events, with C5-1 having more con-
vective cases than C5-2. This is evident from the higher CIN
and column-integrated cloud water in C5-1. However, the
CAPE values for C5-2 are higher, suggesting the events are in
the beginning phase of convective events.

5. Discussion

The vertical profile clusters identified in this study depend
only on the features derived from the autoencoder model
shown in Fig. 2a. Linking these features to cloud physics dem-
onstrates the value of deep learning algorithms. The correla-
tion between the 8-feature autoencoder model output and the
physical variables is examined. Figure 12a shows the correla-
tion coefficient for the five structural variables shown in Fig. 9.
All five variables, including echo-top height, near-surface re-
flectivity factor, maximum reflectivity factor, height of maxi-
mum reflectivity, and MRMS estimated rain rate, show a peak

for feature 3. The echo-top height and maximum reflectivity
height also correlate highly with feature 7. This finding sug-
gests that feature 3 consists of information regarding the re-
flectivity factor values, while feature 7 details the overall shape
and structure of the reflectivity profiles. Other features such as
feature 2, feature 5, and feature 6 also include information on
maximum reflectivity height.

A similar analysis is conducted for the HRRR-based environ-
mental variables and shown in Fig. 12b. Feature 3 demonstrates
the highest correlation for most environmental variables; however,
feature 1 captures the details in relative humidity, while feature 8
is highly correlated with CIN. Moreover, features 5–7 play a criti-
cal role in separating the reflectivity profiles based on 08C height,
precipitable water, and relative humidity. While some features,
such as feature 3 and feature 7, capture the overall struc-
tural information, others capture the intrinsic structural
differences in the reflectivity profiles, thus assisting in the
physically explainable precipitation regime identification. In
a nutshell, the extracted features from the autoencoder
model include nonlinear information content on the struc-
ture of the reflectivity profiles that correlate well with the
physical variables suggesting the dependence of precipita-
tion regime on the vertical distribution of hydrometeors.

6. Summary and conclusions

A machine learning tool is developed to identify distinct
precipitation regimes based on the vertical structure of their

FIG. 10. Probability distribution function showing the variation of MRMS precipitation type within the macroclusters: (a) C1, (b) C2,
(c) C3, (d) C4, and (e) C5.
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reflectivity profiles. Demonstrated using the MRMS network
observations, the tool employs an autoencoder and an unsu-
pervised clustering technique constrained by the profile struc-
ture and reflectivity magnitude to define and identify different

precipitation states. The resulting regimes are linked to the
precipitation type, rate, and environmental variables support-
ing the physical meaning of each cluster. The key findings are
as follows:

FIG. 11. Boxplots showing the variability of environmental variables: (a) surface pressure, (b) 2-m temperature,
(c) relative humidity, (d) 08 isotherm height (e) precipitable water, (f) total integrated cloud water, (g) CAPE, and
(h) CIN for the clusters.
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• The proposed framework reduces the dimension of the re-
flectivity profiles by 85% with a mean squared error loss of
approximately 0.4 dBZ. The bias for most of the profiles is
within 0.1%. Moreover, the reconstructed profiles from the
retrieved features are highly correlated with the observed
ones.

• A coupled k-means and agglomerative clustering method
identified 18 clusters that could be combined into five mac-
rocluster groups (C1, very shallow; C2, shallow; C3, midle-
vel; C4, deep; and C5, very deep) based on the echo-top
heights. The subclusters within the five macroclusters can
capture the intrinsic structural difference.

• The first macrocluster (C1) captures very shallow precipita-
tion profiles (echo-top height between 3 and 6 km AGL)
and has five subclusters (C1-1–C1-5). The first subcluster
(C1-1) is a warm shallow system, while subcluster 5 (C1-5)
has higher CAPE suggesting updrafts and shallow convec-
tive systems. The other subclusters of very shallow group
are identified as shallow stratiform precipitation systems.

• The second macrocluster (C2) includes profiles with echo-
top heights of around 6–8 km AGL and has five subclusters
(C2-1–C2-5). One of the subclusters (C2-5) in the shallow
group has the highest median value of CAPE among all

clusters. C2-2 also shows higher variations with CAPE
value suggesting the potential to develop into convective
storms.

• The midlevel systems identified by the macrocluster, C3,
show the least variability in the environment across its
three subclusters (C3-1–C3-3) compared to the other mac-
rocluster groups. The events in subcluster C3-3 have higher
precipitable water content and 08 isotherm levels relative to
the other subcluster groups. The CAPE and CIN values
are low, suggesting the absence of convective activity
within predominantly stratiform and tropical-stratiform sys-
tems characterized by brightband presence.

• The fourth macrocluster (C4) depicts the deep precipita-
tion systems with three subcluster categories (C4-1–C4-3)
and echo-top heights greater than 9 km AGL. Characteris-
tic are higher CIN values and low variability of the CAPE
across the all three subclusters. Exception is the total inte-
grated cloud water content, with its minima found in C4-3
subgroup.

• The final macrocluster (C5) includes the deepest precipita-
tion systems with similar echo-top heights within its two
subcluster categories. C5-1 captures convective-dominated
deep precipitation events of high intensity, while C5-2 in-
cludes significantly less intense precipitation events with
lower amounts of integrated cloud water content and
higher CAPE values.

The identified precipitation structure clusters align well
with the environmental conditions and consist of more physi-
cal information than the traditional precipitation classes. Ap-
plicability of the presented tool is not limited to the region
and observation sources used in this study. The method can
easily be applied to any ground- and space-based observation
reference, supporting local to global applications. The pro-
posed tool can help to better understand and classify precipi-
tation regimes, develop physics-guided retrievals and also
serve as initial conditions for numerical weather models.
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